Course: Major **Paradigm of Programming Languages** Semester: I Credits: 4 Subject Code: SMAJCPPL123552 Lectures: 60 ## **Course Outcomes:** At the end of this course, the learner will be able to: - CO1-Learn major programming paradigms and techniques involved in design and implementation of modern programming languages. - CO2-Design and develop programs using the Scala programming language. - CO3-Analyze methodologies, design/implementation issuesinvolved with variable allocation and binding with respect to various programming languages. - CO4-Understand the evolution of data types and subroutines. - CO5- Understand the concept of object orientation. - CO6 -Understand the concept of concurrent programming. | Unit 1:Introduction to the programming languages | | |---|--| | Introduction to the programming languages- History and need of various types of programming languages (PL), Types of programminglanguages, Characteristics of programming languages, Language Evaluation Criteria, Syntax, Semantics, Pragmatics Analysis of programming languages. Functional Programming in Scala-Strings, Numbers, Classes and properties, Methods, Objects, Functional Programming, List, Array, Map, Set. | | | Unit 2:Scope, Control flow in programming languages | 15 | |---|----| | Scope -The Notion of Binding Time, Object Lifetime and Storage Management, Static Allocation, Stack-Based Allocation, Heap-Based Allocation, Garbage Collection, ScopeRules, Static Scoping, Nested Subroutines, declaration order, Dynamic Scoping, meaning of Names in a Scope, Aliases, Overloading, Polymorphism and binding of Referencing Environments, Subroutine Closures, First-Class Values and Unlimited Extent, Object Closures, Macro Expansion. Control flow-Expression Evaluation- Precedence and Associativity, Assignments, Initialization, ordering within Expressions, Short-Circuit Evaluation, Structured and Unstructured Flow-Structured Alternatives go to, Sequencing-Selection Short-Circuited Conditions, Case/Switch Statements, Iteration -Enumeration-Controlled Loops, Combination Loops, Iterators, Controlled Loops, Recursion, Applicative | | | and Normal-Order evaluation. | | | Unit 3: Data types an | d Subroutines | | 1 | |--|---|--|--| | Decimal, Boolean T
Strings and Their C
Implementation of to
User defined Ordin
ordinal types. Array types-Design
categories, Heterog | Types, CharacterTypes Operations, String Leng String types, al types -Enumeration I issues, Arrays and income and income arrays | c Types-Integer, Floating
s, Character String Types,
gth Operations, Evaluation
types, implementation of
dices, Subscript bindings
Arrayinitialization, Arrayaluation, Implementation | DesignIssues, n, f user defined and array yoperations, | | Board of Studies | Department | Name | Signature | B.Sc(Comp. Sci.) Chairperson (HoD) Associative Arrays & implementation. - Record type- Definitions of records, References to record fields, Operations on records, Evaluation, Implementation of Record types - Pointer and Reference Types-Design issues, Pointeroperations, Pointerproblems, Dangling pointers, Solution to dangling pointer problem, Lost heap dynamic, variables, Comparison of Pointers in C and C++, Referencetypes, Evaluation, Implementation of pointer and reference types. - Subroutines-Fundamentals of Subprograms, design Issues for subprograms, Local Referencing Environments, parameter, PassingMethods, Parameters that are Subprograms, OverloadedSubprograms, design Issues for Functions, User-Defined Overloaded Operators, Coroutines, General Semantics of Calls and Returns, Implementing Subprograms with Stack-Dynamic Local Variables, NestedSubprograms, Blocks, Dynamic scope. ## **Unit 4: Object Orientation and Concurrency** 15 - Object-Oriented Programming-Encapsulation and Inheritance, Initialization and Finalization, Choosing a Constructor, References and Values, Execution Order, Garbage Collection, Dynamic Method Binding, Virtual- and Non-Virtual Methods, Abstract Classes, Member Lookup, Polymorphism, Object Closures, Multiple Inheritance - Introduction to concurrent programming—Introduction to Concurrency, categories of concurrency, Subprogram-level, concurrency Fundamental concepts, Language design for concurrency, design Issues, Semaphores, Monitors, Introduction to Message Passing, concept of Synchronous Message Passing JavaThreads, The Thread class, Priorities ## Reference Books: - Alvin Alexander, Scala Cookbook, O'Reilly Publication - Elsevier, Scott Programming Language Pragmatics, Kaufmann Publishers ISBN 9788131222560. - Robert W. Sebesta, Concepts of Programming, Pearson Education | Board of Studies | Name | Signature | | |----------------------------------|-----------------------|-----------------|---| | Chairperson (HoD) | Mrs. Ashwini Kulkarni | AW 5/2/23 | | | Faculty | Mrs. Swati Pulate | 8.1h
1517123 | 5 | | Faculty | Mrs. Smita Borkar | 151212 | | | Faculty | Mrs. Shubhangi Jagtap | Shushara | 0 | | Faculty | Mrs. Alka Kalhapure | Alka 15/7/123 | | | Faculty | Mrs. Anjali Kale | AMerans | | | Subject Expert
(Outside SPPU) | Dr. Aniket Nagane | January 123 | | | Subject Expert
(Outside SPPU) | Dr. Manisha Divate | - Liver of | F | | Board of Studies | Department | Name | Signature | |-------------------------|------------------|-----------------|-----------| | Chairperson (HoD) | B.Sc(Comp. Sci.) | Ashwini Kulkani | KW/ | | 174 | | | | St. Mira's College for Girls, Pune (F.Y.M.Sc.(CS) 2023-2026) | VC Nominee (SPPU) | Dr. Reena Bharathi | A 18 7 23 | | |-------------------|--------------------|-------------------|--------------------| | Industry Expert | Ms. Anjali Ingole | | MAIllulay: 15/7/23 | | Alumni | Ms. Pooja Pandey | - Tardy (S. F. C. | | | Board of Studies | Department | Name | Signature | |-------------------|------------------|-----------------|-----------| | Chairperson (HoD) | B.Sc(Comp. Sci.) | Ashwini Kulkani | AU |